Hermite-Fejér-Related Interpolation and Product Integration
نویسندگان
چکیده
منابع مشابه
Hermite and Hermite-Fejér interpolation for Stieltjes polynomials
Let wλ(x) := (1−x2)λ−1/2 and P (λ) n be the ultraspherical polynomials with respect to wλ(x). Then we denote by E (λ) n+1 the Stieltjes polynomials with respect to wλ(x) satisfying ∫ 1 −1 wλ(x)P (λ) n (x)E (λ) n+1(x)x dx { = 0, 0 ≤ m < n+ 1, = 0, m = n+ 1. In this paper, we show uniform convergence of the Hermite–Fejér interpolation polynomials Hn+1[·] and H2n+1[·] based on the zeros of the Sti...
متن کاملHermite and Hermite-fejér Interpolation of Higher Order and Associated Product Integration for Erdős Weights
Using the results on the coefficients of Hermite-Fejér interpolations in [5], we investigate convergence of Hermite and Hermite-Fejér interpolation of order m, m = 1, 2, . . . in Lp(0 < p < ∞) and associated product quadrature rules for a class of fast decaying even Erdős weights on the real line.
متن کاملConvergence of Hermite and Hermite-Fejér Interpolation of Higher Order for Freud Weights
We investigate weighted Lp(0 < p <.) convergence of Hermite and Hermite– Fejér interpolation polynomials of higher order at the zeros of Freud orthogonal polynomials on the real line. Our results cover as special cases Lagrange, Hermite– Fejér and Krylov–Stayermann interpolation polynomials. © 2001 Academic Press
متن کاملConstrained Interpolation via Cubic Hermite Splines
Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1994
ISSN: 0021-9045
DOI: 10.1006/jath.1994.1063